
Constructionism 2012, Athens, Greece

 RESEARCH REPORT 405

How to enhance the robotic experience with Scratch

Javier Arlegui, arleguip@unavarra.es
Dept. of Psychology and Pedagogy, Public Univ. of Navarra, C. Arrosadía, Pamplona, Spain

Michele Moro, michele.moro@dei.unipd.it
Dept. of Information Engineering, Univ. of Padova, Via Gradenigo 6/A, 35131 Padova, Italy

Alfredo Pina, pina@unavarra.es
Dept. of Math. and Computer Eng., Public Univ. of Navarra, C. Arrosadía, Pamplona, Spain

Abstract

The paper shows how deep a robotic experience can be using the Scratch environment. After

some motivating reflections and remarks, the paper presents a sequence of demonstrative

examples exploiting most of the Scratch commands able to promote such an experience. In the

conclusions the possibility of using external hardware is also mentioned.

Keywords

Educational robotics, Scratch, Constructionism, IBSE

Introduction

When you read a paper or a report on the educational use of robotics, most times it is put in

connection with the constructionist approach (Bers et. al., 2002; Goldman et. al., 2004, Chang et.

al., 2010). This is not surprising: the original Papert’s turtle was a drawing robot, basic

educational robots like Bee-bot and Pro-bot (see http://www.tts-group.co.uk) are programmed

with Logo-like primitives, and very often simple robot motion examples are based on commands

very similar to the turtle’s motion commands. Moreover most researchers agree on considering

constructionism the correct and effective way both to introduce elementary robotics and to

exploit all the educational potential that robotics can convey (Demo et. al., 2012).

In this sense Scratch (http://Scratch.mit.edu/) is not an exception: this successful legacy of LOGO

tradition has various relations with robotics: it includes several commands to give sprites a

stronger robotic apparatus, it is interfaced with external devices like Picoboard and LEGO WeDo

useful for realizing physical robotic constructions, it has been extended to control a LEGO

Mindstorms NXT or an Arduino system (http://www.arduino.cc/). Through a sequence of

documented examples, this paper presents motivations for using Scratch to have an initial, deeper

robotic experience before starting with a physical robot. Coming from our previous experience in

Educational Robotics, this is a preliminary result of our research that, without denying the

fundamental value of working with real robots in a real environment, can show how it is possible

to have a rewarding experience in a known and widespread virtual environment, anticipating

most of the competences successively developed with a real robot. A teacher could promote this

approach designing a constructionist progression from Scratch as an authoring system, from

Scratch as a virtual robotic environment, from Scratch with external devices for teaching control

principles, towards the use of an autonomous real robot to face the uncertainties of the real world.

In the second section we provide some general motivations and discuss critical aspects that the

Theory, Practice and Impact

[Arlegui, Moro & Pina] 406

literature and our personal experiences show. The third section is dedicated to the set of

examples: as an auxiliary compact notation for this paper to present Scratch code, we will use a

textual language which is defined and used in the official Scratch wiki and forums

(http://wiki.Scratch.mit.edu/wiki/Block_Plugin/Syntax). Some final remarks conclude the paper.

Robotics at school: motivations and criticalities

Papert's great contribution was to build a educative “medium” specially adapted for children to

make learning processes compliant with the psycho-genetic theories of Piaget (Piaget, 1972). The

medium was a cinematic object: the LOGO turtle and a structured language of commands and

functions to manage its behaviour, the LOGO language. Papert actually designed (without

knowing it) one of the first educational robots (Papert, 1980).

The educational proposals based on Piaget's theories were initially radical: they were based on his

proposition that “every time we teach a child something, we prevent him from finding it out by

himself”. Here we see the initial foundations of an active-autonomous learning through self-

discovery that will be transformed, with Vygotsky's social contributions (Vygotsky, 1968), in

active-driven learning through exploration/inquiry, i.e. what we identify today as social

constructivist learning. Thus we see that the genesis of robotics at school, and of the

methodological reasons for its introduction, derives from the conjunction between Piaget and

Papert.

Enabling students to have “real” learning experiences (in the Piaget's sense) has been the main

motivation of the development of LOGO in compulsory education. It is the methodology, rather

than the content of learning, that matters, and the last educational goal was “learning to learn”.

The direct examination of physical objects by the child, according to Piaget, allows him to build

logical schemas of concrete operations and to gain a equilibrium in the scope of his interaction

with the environment.

But the exploration of the turtle exhibits substantial differences. You don’t touch the LOGO

turtle, you cannot directly interact with it, but only through its programming language. A

“physical” exploration in the behaviour of the turtle is done through the linguistic exploration of

its formal programming language. It is an indirect exploration, mediated by language. Though

being a concrete exploration activity it is applied on a formal context, and in this case the

discovering activity of the child allows him to build their own logic schemas of formal

operations. The benefit of young people working with LOGO programming environment is to

allow extending the same Piagetian methodology of learning through discovery to the

construction of cognitive patterns of formal operations.

Clearly, in this first stage of “robotic learning” the greatest interest is in the functional and

constructivist learning of the programming language as a vehicle for a constructivist learning of

the formal spaces and their rules for the representation and communication of the world, for

making students access the formal competences.

Common implementations of LOGO provide a working scenario (the environment) where we can

control “actors”. The language allows the interaction between actors, but does not realize the

interaction between actors and environment. The environment is a purely decorative stage, a

drawing of pixels, and an actor (turtle) can only detect the colour of the pixel on which is

currently located. This leads to the design of microworlds usually without a stage, where the

requested tasks and procedures are not dependent on the environment and deal with how to

construct certain completely pre-determined geometric paths If you consider the usual LOGO

Constructionism 2012, Athens, Greece

[Arlegui, Moro & Pina] 407

procedure to draw a regular polygon, the task of the turtle is not conditioned by the environment.

Consequently LOGO primitives commonly used in this kind of problems are commands and

arithmetic functions for the movement of the turtle and the control statement "repeat". On the

contrary, the conditional statement "if" is much more rare.

But an hypothetical-deductive thinking can be more complex, and it reaches a second level of

abstraction when formulating and validating hypotheses about appropriate “behavioral

conditions”. They are hypotheses about the variables expressing interactions with the

environment: sensorized robots interact continuously with the environment.

Scratch offers advantages as an evolution of LOGO. While promoting, like LOGO, basic

hypothetical thinking, its design moves around a more advanced interactive language and may

allow, on the one hand, the simulation of “physical” environments and, on the other hand, the

enrichment of its “sprites” with simulated sensors, i.e. it permits to work on the second level of

the hypothetical-deductive thinking. This will be exemplified in the following sections.

Similarly as the LOGO turtle, a Scratch “virtual robot” has some advantages over physical robots,

which are worth considering if you are more interested in a school constructivist work. These

advantages regard the unavoidable uncertainty of a physical robot when translating into actions a

given task. There are unavoidable differences between the values of the real structural parameters

of a robot (influencing the actual behavior of the robot) and the theoretical parameters of the

robot model (which are taken into account when solving the requested tasks). For example,

common differences are in the actual wheel radius, in the actual width of the shaft between the

driven wheels, etc.). There are also limitations on the engine power, the measurement accuracy of

the sensors, there is uncertainty in the trajectory due to the inertia and friction, ... This causes a

physical robot to implement a “conceptual” macro-task with imprecision. For example, it is hard

to make the robot move straight and turn on the perimeter of a perfect hexagon, reaching a final

state that is identical to its initial state. This is not due to an error in the formulation of the task (in

the programme coding), but to an inaccuracy which is usually more significant in less

sophisticated robots, such as in educational robots.

Scratch virtual robots, such as LOGO turtles, have not this problem because its accuracy is of the

order of the density of pixels on the screen, which at present is high enough to consider it as an

ideally perfect robot, at least in their 2D motions.

The immediate availability of the robot contributes greatly to maintain the motivation to advance

in the constructivist process and to realize an effective learning. Conversely, the difficulty of

having a personal physical robot (or one robot for a small group of students) sometimes makes

hard, or even cancels it, a true exploratory learning. The requirement for direct interaction with

the robot (even mediated by the programming language) is also here, in a “formal” constructivist

learning, as important as it is in a “concrete” constructivist learning.

Robotics in Scratch

We present here a sequence of small demonstrative examples which show how deep the ‘robotic’

experience with Scratch could be. These examples were developed using the current 1.4 version.

In some cases scripts were defined with the role of parameterized functions: thus a BYOB

(http://byob.berkeley.edu/) implementation would be even more effective.

Simple motion

In (Alimisis et. al., 2009) the first examples proposed regard a simple straight-line motion in

Theory, Practice and Impact

[Arlegui, Moro & Pina] 408

order to have a first deepening of the basic involved physical entities: space, time, linear and

angular speeds. Scratch provides two ways to finely control motion: the glide basic command and

using the timer support.

Starting from the simple example of a bus which has to stop in front of bus stops at fix distance

(fig. 1, labels are independent, not moving sprites), let us set the stopDis variable to this distance

and busSpeed to the requested bus speed, (space is measured in steps, the unit used by Scratch;

time in seconds, thus speed is measured in steps/s), numStops the number of stops and waitStop

the time the bus must stay at the stop before moving to the next one. The main loop to implement

the travel is the following:

repeat (numStops)
 glide ((stopDis)/(busSpeed)) secs to x: ((x position)+(stopDis)) y: (y position)
 wait (waitStop) secs
end

Figure 1. Simple bus motion

Unfortunately, there is no glide version where motion is specified in a relative form, i.e. using

direction and distance, more reasonable for an autonomous robot which usually cannot refer to

absolute Cartesian coordinates. Thus in our simulation we must calculate them.

When stops are in random positions, you can use the point towards to re-orient the moving sprite

towards the next fixed stop, whereas the distance command evaluates the distance to be travelled

for the next tract. These two commands can be seen as sensors of the robot sprite that return

respectively the relative direction and distance of an object. Destinations are identified by sprite

names, suitable chosen to facilitate their enumeration. The absolute coordinates of each target

sprite are now calculated using the x position of sprite and y position of sprite commands (fig. 2).

repeat (numStops)
 change (i) by (1)
 set [stopName v] to (join [Stop] (i))
 point towards (stopName)
 glide ((distance to (stopName)) / (busSpeed)) secs to x: ([x position v]
of (stopName)) y: ([y position v] of (stopName))
 point in direction (90 v)
 wait (waitStop) secs
end

Figure 2. Random positions of stops

When bus stops are on a straight line but not at known distance, and we want the robot to

recognize stop labels, we should provide it of a suitable sensor. This can be simulated using the

color <color1> is touching <color2> ? boolean block. For example, if we add a small red filled

rectangle in front of the bus ‘costume’ (shape) and we know that the label pedestals are black, the

following code works (fig. 3, notice the color codes):

repeat (numStops)
 repeat until <color [#FF0000] is touching [#000000] ?>
 glide (((busStep)/(busSpeed)) -(0.06)) secs to x:
((x position) + (busStep)) y: (y position)
 end
 wait (waitStop) secs
 move (busStep) steps
end

Figure 3. Sensorized bus

Constructionism 2012, Athens, Greece

[Arlegui, Moro & Pina] 409

The bus moves through a small amount of busSteps steps and the speed is correspondingly tuned,

including a 0.06 s of delay. The final move shifts the bus over the current label pedestal.

Obstacle avoidance

Obstacle avoidance is a very typical robotic challenge: we present here some examples of

increasing complexity to show the wide spectrum of possibilities.

In the first example we assume to know the name of the ‘obstacle’ sprite. touching

<obstaclesprite> ? returns true when the current sprite touches the other one in any point of their

respective shape boundaries. With the code of fig. 4, if you put the robot sprite below the obstacle

on its vertical, when the sprite reaches it, the sprite moves aside to avoid the obstacle.

repeat until <(y position) > (180)>
 change y by (3)
 repeat until < not <touching [ObstacleSprite v] ?>>
 change x by (10)
 end
end

Figure 4. Simple obstacle avoidance

In the second example we have several obstacles in unknown positions but with known colors. In

this case it is not even necessary that obstacles are sprites: they are directly drawn on the stage.

touching color <color> ? reveals the obstacle proximity. We use also the touching edge ? block

to make the sprite to remain within the stage boundaries. The red ball, i.e. the robot sprite,

‘dances’ bouncing on the encountered obstacles and on the edges (fig. 5).

forever // main script
 move (3) steps
 if <touching color [#000000] ?>
 turn right (180) degrees
 repeat (10)
 move (2) steps
 end
 turn right (pick random (10) to (260)) degrees
 end
 if <touching [edge v] ?>
 turn right (pick random (70) to (160)) degrees
 move (4) steps
 end
end

forever // secondary script
 if < (distance to [mouse-pointer v]) < (10)>
 turn right (180) degrees
 move (30) steps
 turn right (150) degrees
 end
end

Figure 5. Bouncing ball

The interaction with the user is increased by the secondary script of the figure: if you move the

mouse pointer near the moving sprite, it jumps a little. These two segments of code can (and

must) be defined as independent, concurrent scripts, both activated with the when green flag

clicked command. This adds a flavour of concurrency, an important aspect in robot controlling.

Next, we present a more structured solution, though the avoidance strategy is still elementary.

The touch function returns 1 in touch_yes if the sprite touches one of the obstacles. To check this,

we use touching <obstaclename> ? and again numObst obstacles have known, easily enumerable

names (fig. 6). For conciseness we define a glidedistt function that executes a glide for

glidedistt_time seconds and for a distance of glidedistt_dist steps in the current sprite direction.

The robot
moves
aside

Theory, Practice and Impact

[Arlegui, Moro & Pina] 410

when I receive [touch v]
set [i v] to (1)
set [touch_yes v] to (0)
repeat (numObst)
 if < touching (join [Obst] (i)) ?>
 set [touch_yes v] to (1)
 stop script
 end
 change [i v] by (1)
end
//---
when I receive [glidedistt v]
 glide (glidedistt_time) secs to x: ((x position) +
((glidedistt_dist) * ([sin v] of (direction)))) y: ((y position) +
((glidedistt_dist) * ([cos v] of (direction))))

Figure 6. Touch and glidedistt functions

The avoidance algorithm could be straightforward: when during the motion in small steps the

sprite touches an obstacle (touch_yes is true after calling touch), it tries to go around it and then it

goes forward along the initial direction. In the following example we want that the ‘going around

dance’ of the robot is performed when the minimum distance of the objects, which are in the

angle of  15 with respect to the robot’s axis, is lower than a given threshold. To evaluate such

distances we simulate a distance sensor (ultrasonic sensor) through the the dist function in fig. 7.

when I receive [dist v]
set [i v] to (1)
set [dist_d v] to (3000)
repeat (numObst)
 set [dir_x v] to (<[x position v]
of (join [Obst] (i))> - (x position))
 set [dir_y v] to (<[y position v]
of (join [Obst] (i))> - (y position))

 broadcast [dir v] and wait
 if < ([abs v] of ((direction) - (dir_ang))) < (15) >
 if < (distance to (join [Obst] (i))) < (dist_d) >
 set [dist_d v] to (distance to (join [Obst] (i)))
 end
 end
 change [i v] by (1)
end

Figure 7. The dist function

The minimum distance is returned into the dist_d variable. The dir function (fig. 8) receives in

dir_x and dir_y respectively the x and y components of a bi-dimensional vector and returns in

dir_ang its direction, i.e. the angle of its polar representation. In dist it is called to calculate the

direction of the conjunction of the sprite and the obstacle centres, relative to the sprite direction.

when I receive [dir v]
if < (dir_y) > (0) >
// to distinguish quadrants because sin/cos are
not completely invertible
 set [dir_ang v] to <[asin v] of
((dir_x)/<[sqrt v] of (((dir_x)*(dir_x)) +
((dir_y)*(dir_y)))>)>
else
 set [dir_ang v] to <[acos v] of
((dir_y)/<[sqrt v] of (((dir_x)*(dir_x)) +
((dir_y)*(dir_y)))>)>
 if < (dir_x) < (0) >
 set [dir_ang v] to ((0) - (dir_ang))
end

// main script
repeat until << (x position) > (236) > or <(y
position) > (176) >>
 set [glidedistt_time v] to (0.4)
 broadcast [dist v] and wait
 if < (dist_d) < (minDist) >
 // go around
 end
 set [glidedistt_time v] to [0.2]
 set [glidedistt_dist v] to [10]
 broadcast [glidedistt v] and wait
end

Figure 8. The dir function

The unspecified ‘go around’ section can be easily improved with respect to the previous example,

using the dist function to avoid to go to the side of the first obstacle where another obstacle is

very close (possibly declaring a failure if both sides have close obstacles).

The robot
goes
around
obstacles

Constructionism 2012, Athens, Greece

[Arlegui, Moro & Pina] 411

We only mention a further example where we have provided a scan function which returns in two

lists the distances and the directions, relative to the robot position and direction, of each one of

the numObst obstacle sprites which are in the range of directions -90+90 (i.e. obstacles that lie

before the robot). This function can be thought as the equivalent of a “range scanner” sensor,

providing distances and angles.

Other sensing

When you know the name of the target sprite, the two commands point towards <sprite> and

distance to <sprite>, simulating the information usually given by a range scanner, give a sort of

aligning sensor. Such tool can be used to realize simple forms of approaching and following other

objects or moving robots.

The PC microphone is interfaced with Scratch so that it acts as a sound sensor. The level of the

perceived sound can condition a script through the loudness sensor returning a value in the range

0100. Another possibility we suggest for simulating a robot equipped with a sound sensor, or a

phonometer, is to imagine a source, represented by one sprite, emitting a sound with a given

power and the robot that measures a certain acoustic pressure level which depends on the source

power and the distance. For a spherical propagating sound, acoustics defines a pressure level at

distance r, measured with the logarithmic scale of dB, as follows:

Lp = Lw – 20log10 r – 11 (dB) Lw = 10log10 (W/W0)

where Lw is the acoustic (constant) power level, that depends from the source, W is the source

sound power, W0 is the power of the minimum audible source, conventionally set at 10
-12

 W(att).

In your program you can assume a certain value for Lw and calculate Lp calculate Lp with the

formula above.

Line following is one of the basic robot application using a light sensor: pointing it towards the

floor, it makes the robot to distinguish a light area from a dark area and therefore, suitably

modifying the direction of the robot, you can maintain it along the border of a black shape on a

white plane. We simulate the comparison of the level measured by the light sensor with a certain

threshold with the on-off response of the touching color <color> ? boolean block. Consider this

simple solution (fig. 9).

goto x: (-170) y: (0)
point in direction (0 v)
forever
 move (1) steps
 if < touching color [#000000] ? >
 turn left (2) degrees
 say [Lt]
 else
 turn right (2) degrees
 say [Rt]
 end
end

a) Around a circle b) Complex shape

Figure 9. Line follower

The robot, represented by a very small red circle, moves clockwise around the black circle near

its boundary. Unfortunately, even not surprisingly, this simple solution suffers of a certain

instability which makes sometimes the robot fluctuating more or less far from shape boundary.

This is more evident on a more complex shape like the on in fig 4b.

Simulation of a motorized robot

Now we attempt to more precisely simulate a physical robot with one or two motors, two wheels

Theory, Practice and Impact

[Arlegui, Moro & Pina] 412

for imparting the motion energy and assuming that the robot can turn like a robot turtle.

In the first example we have a one-motor robot running on a straight line. We have realized a

motor command, similar to that realized in NXT-G for the LEGO Mindstorms NXT robot. It

receives 4 parameters: motor_power, regulating the motor angular speed, motor_dir specifying

the direction (forward or backward), motor_dur specifying a generic duration which depends on

its type motor_durtype as follows: when rot, motor_dur is the number (with fraction) of full

rotations; when sec, it is a time measured in seconds; when deg, it is the number (with fraction) of

degrees to be sweeped. The robot configuration parameters are the maximum angular speed

(maxangspeed) and the wheel radius (radius). The motor implementation first calculates in ang

the requested motion angle and in angspeed the angular speed, proportional to motor_power so

that speed is maxangspeed when motor_power is 100. The motion is performed in a certain

number of steps long astep units each. So the total distance (dist) and the corresponding time

quantum (tstep) are evaluated. To permit to stop the movement in any moment, a stop flag is

used, set by the concurrent stop command. We also add an lmotor command which receives a

linear distance parameter (lmotor_dist) instead of the motor_durtype/motor_dur couple. Setting

the motor parameters you can move forward or backward the robot in a finely controlled way, for

example with the distance stops bus problem (fig. 1). You can also add the equivalent of a color

sensor to the robot, putting a small colored square on the tip of a protuberance that comes out

from the robot body (fig. 10).

when I receive [motor v]
set [stop v] to (0)
set [angspeed v] to (((maxangspeed)*(motor_power))/(100))
if < (motor_durtype) = [rot] >
 set [ang v] to ((motor_dur)*(360))
else
 if < (motor_durtype) = [sec] >
 set [ang v] to ((angspeed)*(motor_dur))
 else
 set [ang v] to (motor_dur) // degrees
 end
end
set [dist v] to ((((ang)*(3.1416))*(radius))/(180))
set [astep v] to (2) // linear step
set [tstep v] to (((ang)*(astep))/((angspeed)*(dist)))
set [time v] to ((tstep)-(0.1)) // final instant
reset timer
repeat ((dist)/(astep))
 move ((astep)*(motor_dir)) steps
 wait until < (timer) > (time)>
 if < (stop)=(1) >
 stop script
 end
 change [time v] by (tstep)
end

when I receive [lmotor v]
set [motor_durtype v] to [deg]
set [motor_dur v] to
(((lmotor_dist)*(180))/((3.1416)*(radius)))
broadcast [motor v] and wait

when I receive [color v]
if <color [#FF9400] is touching [#FFFFFF] ?>
 set [color_color v] to (0) // white
else
 if <color [#FF9400] is touching
[#000000] ?>
 set [color_color v] to (1) // black
 else
 if <color [#FF9400] is touching
[#FF0000] ?>
 set [color_color v] to (2) //
red

 else
 . . .
end

Figure 10. The motor command and a color sensor

The color function returns in color_color a color code. The relative complexity of this coder is

due to the fact that in the current version of Scratch we cannot refer directly to color codes.

The last example is the most complex one because it tries to simulate a steering robot with 2 drive

wheels with separate motors. The move command receives parameters similar to motor, plus

move_steer representing the steering level, (0 = no steering, 10 = pivoting). With move_steer=0

the robot go straight and this part of the implementation is equal to the motor command. When

move_steer>0, we assume that l>r (l and r angular speed respectively of the left and right

Constructionism 2012, Athens, Greece

[Arlegui, Moro & Pina] 413

wheel) and that  is set on the basis of move_power, whereas r depends on the steering value.

Say d the distance between the two wheels; the radius R drawn by the internal wheel is given by

(for a detailed description of the theory, see Alimisis et. al., 2009)

R = dr / (l-r) = d(r/l) / (1-r/l)

For simplicity, we assume a reasonable linear relation between the r/l ratio and the steering s.

r/l = 1 - 1/5s R = d(1 - 1/5s) / (1-(1 - 1/5s)) = d(5 - s) / s

Say al = αwl  r the length of the arc in radians of radius R+d drawn by the external wheel, and r

the wheel radius. In the motion the steering radius draws an angle Θ and for its measure it holds:

Θ = al / (R+d) = αwlr / (R+d) = αwlr / ((d(5 - s) /s) +d) = αwlrs / (d5)

Θ is the angle drawn also by the two other radius, R for the internal wheel and R+d/2 for the

robot centre. Thus this latter must draw an arc ac of length:

ac = Θ(R+d/2) = Θd(10-s) / (2s) = αwlr(10-s) / 10 (αwlin radians)

// stop, angspeed and ang as in motor command
set [dir v] to (1)
if < (move_steer) < (0) >
 set [dir v] to (-1)
// dir gives the turning side +1=right -1=left
 set [move_steer v] to ((0) - (move_steer))
end
if < (move_steer) = (0) > // this is equal to motor
reset timer
else
 set [theta v] to ((((ang)*(radius))*(move_steer)) /
((wdist)*(5)))
 set [astep v] to ((((([tan v] of (1))*(wdist))*((10)-
(move_steer)))*(move_dir)) / ((move_steer)*(2)))
 set [tstep v] to (((ang)*(2)) / ((angspeed)*(theta)))
 set [time v] to ((tstep)-(0.1))
 reset timer
 repeat ((theta)/(2))
 move (astep) steps
 turn right ((2)*(dir)) degrees
 move (astep) steps
 wait until < (timer) > (time) >
 if < (stop) = (1) >
 stop script
 end
 change [time v] by (tstep)
 end
 change [time v] by ((0) - (tstep))
end

 b) line follower

// line follower application
set [move_dir v] to (1)
set [move_durtype v] to (sec)
set [move_dur v] to (6000)
set [move_power v] to (100)
forever
 boadcast [stop v] and wait
 if <color [#FF9400] is touching
[#FFFFFF] ?>
 set [move_steer v] to (-2)
 broadcast [move v]
 else
 set [move_steer v] to (2)
 broadcast [move v]
 end
end

 a) the path

Figure 11. The steering robot

We execute this motion of the sprite centre on a arc of circle, which produces a total rotation of Θ

of the sprite axis, repeating Θ/δ small angular steps of δ units. We approximates this micro-

R d

b

δ

δ

δ/2

b

Theory, Practice and Impact

[Arlegui, Moro & Pina] 414

motion with a sequence of move-turn-move commands so that, after one small step, the position

and direction of the robot are the expected ones with a real arc of δ units. It results:

b = Rc  tg (δ/2) = (R+d/2)  tg (δ/2) = d(10-s) tg (δ/2) / (2s)

So the sprite, executing a move(b), turn(δ), move(b), reaches the correct position and orientation

after one step. Experimentally we chose δ=2 as its minimum feasible value. Fig. 11 shows an

application, a line follower with the robot equipped with the equivalent of a light sensor. The stop

command provides a way to resetting a previous move command (broadcast without wait).

Conclusions

As shown in this paper, Scratch includes several features which can be attributed to usual robotic

behaviours. Carefully exploiting these features makes it possible for a student to have a

significant experience of ‘virtual’ robotics in a ‘virtual’ environment which is a probably already

known and not complex authoring system. Therefore, before working with a real robot, most

important aspects of robotics having an educative value can be easily transferred.

Interfacing an authoring system like Scratch with external hardware can further improve the user

robotic experience and make her closer to the positive learning potential that a real, full-featured

robot exhibits. Scratchboard, LEGO WeDo but especially the low-cost Arduino system are

currently interfaced with Scratch (for example see Scratch for Arduino (S4A),

http://seaside.citilab.eu/scratch/arduino). The smooth learning progression from basic robotics to

experiences with external hardware is more effective when we start with the ‘robotics’ features of

Scratch like the ones we exploited in our experimentation.

References

Alimisis, D., & al. (2009). Teacher Education on Robotics-Enhanced Constructivist Pedagogical

Methods. School of Pedagogical and Technological Education (ASPETE), Athens, Greece, ISBN 978-

960-6749-49-0 (http://www.terecop.eu/).

Bers, M.U., Ponte, I., Juelich, C., Viera, A., & Shenker, J. (2002). Teachers as Designers: Integrating

Robotics in Early Childhood Education. Information Technology in Childhood Education Annual,

2002(1), 123-145.

Chang, C., Lee, J., Chao, P., & Wang, C. (2010). Exploring the possibility of using humanoid robots as

instructional tools for teaching a second language in primary school. Educational Technology & Society,

13(2), 13-24.

Demo, G. B., Moro, M., Pina, A., & Arlegui, J. (2012). In and out of the School Activities Implementing

IBSE and Constructionist Learning Methodologies by Means of Robotics. In B. S. Barker, G. Nugent, n.

Grandgennet, & V. I. Adamchuk (Eds.), Robots in K-12 Education: A New Technology for Learning (pp.

66-92). IGI Global.

Goldman, R., Eguchi, A., and Sklar, E. (2004). Using educational robotics to engage inner-city students

with technology. In Y. Kafai, W. Sandoval, N. Enyedy, A. S. Nixon and F. Herrera (Eds), Proceedings of

the 6th international Conference on Learning Sciences (ICLS-2004) (pp. 214-221), Santa Monica,

California, June 22-26, 2004.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. N.Y.: Basic Books.

Piaget, J. (1972). The Principles of Genetic Epistemology. N.Y.: Basic Books.

Vygotsky, L. S. (1968). Thought and language. Mass.: M.I.T. Press.

